Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499919

RESUMO

Hexavalent chromium [Cr(VI)] is a known lung carcinogen and a driving mechanism in human lung cells for Cr(VI)-induced lung cancer is chromosome instability, caused by prolonged Cr(VI) exposure inducing DNA double-strand breaks, while simultaneously inhibiting the repair of these breaks. In North Atlantic right whales, Cr(VI) induces breaks but does not inhibit repair. It is unclear if this repair inhibition is specific to human lung cells or occurs in other species, as it has only been considered in humans and North Atlantic right whales. We evaluated these outcomes in rodent cells, as rodents are an experimental model for metal-induced lung carcinogenesis. We used a guinea pig lung fibroblast cell line, JH4 Clone 1, and rat lung fibroblasts. Cells were exposed to two different particulate Cr(VI) compounds, ranging from 0 to 0.5 ug/cm2, for 24 or 120 h and assessed for cytotoxicity, DNA double-strand breaks, and DNA double-strand break repair. Both particulate Cr(VI) compounds induced a concentration-dependent increase in cytotoxicity and DNA double-strand breaks after acute and prolonged exposures. Notably, while the repair of Cr(VI)-induced DNA double-strand breaks increased after acute exposure, the repair of these breaks was inhibited after prolonged exposure. These results are consistent with outcomes in human lung cells indicating rodent cells respond like human cells, while whale cells have a markedly different response.

2.
Toxicol Appl Pharmacol ; 479: 116711, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805091

RESUMO

Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure risks. Cr(VI) causes DNA double strand breaks that if unrepaired, progress into chromosomal instability (CIN), a key driving outcome in Cr(VI)-induced tumors. The ability of Cr(VI) to cause DNA breaks and inhibit repair is poorly understood in human lung epithelial cells, which are extremely relevant since pathology data show Cr(VI)-induced tumors originate from bronchial epithelial cells. In the present study, we considered immortalized and primary human bronchial epithelial cells. Cells were treated with zinc chromate at concentrations ranging 0.05 to 0.4µg/cm2 for acute (24 h) and prolonged (120 h) exposures. DNA double strand breaks (DSBs) were measured by neutral comet assay and the status of homologous recombination repair, the main pathway to fix Cr(VI)-induced DSBs, was measured by RAD51 foci formation with immunofluorescence, RAD51 localization with confocal microscopy and sister chromatid exchanges. We found acute and prolonged Cr(VI) exposure induced DSBs. Acute exposure induced homologous recombination repair, but prolonged exposure inhibited it resulting in chromosome instability in immortalized and primary human bronchial epithelial cells.


Assuntos
Cromo , Neoplasias , Humanos , Cromo/toxicidade , Cromo/metabolismo , Pulmão/metabolismo , Instabilidade Cromossômica , Células Epiteliais/metabolismo , Neoplasias/metabolismo , DNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
3.
PLoS One ; 18(10): e0287151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37816015

RESUMO

OBJECTIVE: Pt-Mal-LHRH is a newly synthesized chemotherapeutic agent that was designed to selectively target the luteinizing hormone-releasing hormone (LHRH) receptor expressed by triple negative breast cancer (TNBC). The aim of this study was to evaluate the therapeutic dosing, tumor reduction efficacy, and selective distribution of Pt-Mal-LHRH in-vivo. METHODS AND RESULTS: LHRH tissue expression levels in-vivo were investigated using western blotting and LHRH was found to be increased in reproductive tissues (mammary, ovary, uterus). Further, Pt-Mal-LHRH was found to have increased TNBC tumor tissue platinum accumulation compared to carboplatin by inductively coupled plasma mass spectrometry analysis. The platinum family, compound carboplatin, was selected for comparison due to its similar chemical structure and molar equivalent doses were evaluated. Moreover, in-vivo distribution data indicated selective targeting of Pt-Mal-LHRH by enhanced reproductive tissue accumulation compared to carboplatin. Further, TNBC tumor growth was found to be significantly attenuated by Pt-Mal-LHRH compared to carboplatin in both the 4T1 and MDA-MB-231 tumor models. There was a significant reduction in tumor volume in the 4T1 tumor across Pt-Mal-LHRH doses (2.5-20 mg/kg/wk) and in the MDA-MB-231 tumor at the dose of 10 mg/kg/wk in models conducted by an independent contract testing laboratory. CONCLUSION: Our data indicates Pt-Mal-LHRH is a targeting chemotherapeutic agent towards the LHRH receptor and reduces TNBC tumor growth in-vivo. This study supports drug conjugation design models using the LHRH hormone for chemotherapeutic delivery as Pt-Mal-LHRH was found to be a more selective and efficacious than carboplatin. Further examination of Pt-Mal-LHRH is warranted for its clinical use in TNBCs, along with, other reproductive cancers overexpressing the LHRH receptor.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Receptores LHRH , Neoplasias de Mama Triplo Negativas/patologia , Carboplatina/uso terapêutico , Platina/uso terapêutico , Hormônio Liberador de Gonadotropina , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
4.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203427

RESUMO

Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.


Assuntos
Carcinogênese , Cromo , Instabilidade Cromossômica , Humanos , Securina/genética , Separase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...